Presentation for February 22, 2007

Reforming Parking Policies to Support Smart Growth

prepared for

Metropolitan Transportation Commission Technical Advisory Committee

Project Team:

MTC PM - Valerie Knepper
CHS Consulting Group
Michael R. Kodama Planning Consultants
K.T. Analytics Inc.
Richard Willson, PHD.
Rick Williams Consulting

Parking Demand Estimation Methodology

Objective: Estimate downtown parking demand based on

- Existing & Future Land Uses
- Parking Availability
- o Parking Costs
- Shared Parking Opportunities
- Transit Availability
- Pedestrian/Bicycle Accessibility
- o Auto Ownership Characteristics

Parking Demand Model Inputs

Data used for model calculations and calibration:

- Current and Expected Land Uses
- Existing Parking Supply (both on- and offstreet)
- Peak Hour Parking Occupancy (on- and off-street)
- Current Parking Zoning Requirements

Model Start-up Page

- Providesnavigationbetween modelcomponents
- Walks user through data entry steps
- Links to results& analysis

Data Entry 1: Land Use Categories

- o Model automatically generates category ID numbers to prevent duplicates
- o Land Use Category changes take immediate effect throughout model
- o Specifying each Unit of Measure (e.g. kSF or DU) ensures that rates correspond with data during calculations

Return to Start Page

Wilbur Smith Associates

Data Entry 2: Existing & Future Parcel Use

- Land use data entered
 by type, amount & block
- Land use types are linked from previous entry form
- Pipeline check box codes the parcel as an expected addition (facilitates current vs. future demand calculations)

Data Entry 3: Demand Rates

- Alternative mode, auto ownership & shared parking factors are summed, subtracted from 100% then multiplied with
 - Peak Rate (based on ITE/ULI or parking code and calibrated to existing demand)
 - Short and Long Term demand split
 - Peak hour adjustment (by land use type)
- o Rates generate in real time, allowing users to observe the effect of factor adjustments

Total Demand Calculation

- o Short Term, Long Term and Total Need calculated by multiplying
 - § Each parcel's land use amount (entered previously at Entry Form 2), and
 - § The parcel's corresponding land use Demand Rates (from Entry Form 3)

Analysis: Interactive Chart

- o Displays parking demand data by block number, land use category, existing or future, etc.
- o Select Chart Type
- o Fields window holds data types (e.g. ST Demand, LT Demand, Combined Demand) that can be dragged onto graph, axes, or categories

Block Number

Analysis: Filter Fields

- o By clicking on 'Filter Fields' the user can narrow the dataset being analyzed
- o E.g. to see only parking demand for specific blocks, click on 'BlockNm' and uncheck unwanted blocks

Analysis: Existing vs. Pipeline Projects

- o Or, select InFuture
 field and uncheck
 'False' to observe the
 pipeline projects'
 effect on demand
- o In this chart we have selected Short Term Need by dragging its field into the chart area from the Field list, and dragged Land Use Type to the horizontal axis

Analysis: Pie Chart

- o Pie Chart of the current uses in Menlo Park
- Category-specific information appears when the cursor hovers over a category
- Data can also be displayed in a spreadsheet format to facilitate numeric analysis

Analysis: View Demand by Block

- Summation data for ST, LT and Total parking demand by block is opened from the Main Page
- o Records can be quickly sorted, narrowed by criteria, or exported to other formats

Database Reports

- o This report template displays and summarizes block-by-block parking demand derived by the model
- Different summary, calculation, and display options can be specified by the user
- Automatically reflect any data or rate changes

Parking Rates: Office

		Demand Rate		
Case Study Area	Land Uses	Short Term	Long Term	Total
Union City	Office/R&D	0.6	1.4	2.0
Vallejo (DT)	Office (Gen)	0.6	1.5	2.2
	Office (Govt)	0.3	1.4	1.7
Vallejo (WF)	Office	0.6	1.5	2.2
Morgan Hill	Office	0.7	1.6	2.3
Menlo Park	Office (Gen)	0.7	1.7	2.4
	Office (Govt)	0.4	1.5	1.9
Hercules	Office	0.7	1.6	2.2

Existing Requirements
3.3
3.5
3.5
3.5
4.0
5.0
5.0
3.0

- Model generated lower parking rates than city requirements
- Discrepancy indicates potential for parking code revisions, and mixed use/shared use exemptions

Parking Rates: Retail & Restaurant

		Demand Rate		
Case Study Area	Land Use	Short-Term	Long -Term	Total
Union City	Retail	1.0	0.1	1.1
	Bank	1.4	0.2	1.6
Vallejo (Downtown)	Retail	1.1	0.1	1.2
	Restaurant/Bar	1.2	0.1	1.4
Vallejo (Waterfront)	Retail	1.1	0.1	1.2
Morgan Hill	Retail	1.2	0.1	1.3
	Restaurant/Bar	2.3	0.3	2.6
Menlo Park	Retail	1.2	0.1	1.4
	Restaurant/Bar	1.4	0.2	1.5
	Bank	1.7	0.2	1.9
Hercules	Retail	1.1	0.1	1.3

Existing Requirements
5.7
8.3
1.7
20.0
1.7
3.5
10.0
6.0
6.0
6.0
3.5

- Model generated significantly lower parking rates than city requirements
- Discrepancy indicates potential for parking code revisions and mixed use/shared use exemptions

Parking Demand Elasticity Theory

20:5 Demand Elasticity Factor

- i.e. 5% reduction in parking demand assumed for every 20% increase in parking price
- Standard assumption for parking revenue forecasting in the absence of detailed market research

Price Sensitivity

• Demand curve calibrated for 15% elasticity assumption

Next Steps

- o Incorporate Pricing Module into Model based on:
 - Change in Average Hourly Cost of Parking
 - Demand Growth Factors
 - Price Elasticity
 - Separate Sensitivity for employees versus other parkers

